|
|
More Titrations, Ionic
Equilibria
Copyright
D. Herrick |
|
|
20 Questions from past exams.
Practice for speed. Aim
for 2 minutes per problem.
(all concentrations in molarity units)
|
|
Several
questions involve sulfurous acid, H2SO3,
which has
Ka1 = 1.4 Χ 10
-2 , Ka2
= 6.5 Χ 10 -8.
|
1. |
Use
appropriate combinations of the Bronsted reactions for Ka,
Kb, and Kw to determine which
equilibrium constant is NOT correct for the
neutralization reaction (1 minute each): |
|
2. |
What
volume of 0.10 M NaOH will titrate 50 mL of 0.1 M H2SO3
to the first equivalence point? |
|
A)
25 mL |
B)
50 |
C)
75 |
D)
100 |
E)
125 |
|
3. |
What
volume of 0.10 M NaOH will titrate 50 mL of 0.1 M H2SO3
to the second equivalence point? |
|
A)
25mL |
B)
50 |
C)
75 |
D)
100 |
E)
125 |
|
4. |
What
volume of 0.10 M NaOH will titrate 50 mL of 0.1 M H2SO3
to the second buffer point? |
|
A)
25mL |
B)
50 |
C)
75 |
D)
100 |
E)
125 |
|
5. |
[H+]
in 0.1 M H2SO3 is:
(quadratic equation
is needed here due to high degree of ionization)
|
|
A) |
3.0
Χ 10-2 |
D) |
3.5
Χ 10-2 |
B) |
3.1
Χ 10-2 |
E) |
3.7
Χ 10-2 |
C) |
3.3
Χ 10-2 |
F) |
3.9
Χ 10-2 |
|
6. |
[SO32-]
in 0.1 M H2SO3 is: |
|
A) |
2.5
Χ 10-4 |
D) |
9.1
Χ 10-9 |
B) |
1.4
Χ 10-3 |
E) |
3.9
Χ 10-12 |
C) |
4.7
Χ 10-6 |
F) |
6.5
Χ 10-8 |
|
7. |
A
solution prepared as 0.10 M Na2SO3 has: |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] = [ HSO3
] > [ SO3 2
] |
C) |
[
HSO3 ] > [ H2SO3
] = [ SO3 2 ] |
D) |
[
HSO3 ] = [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ HSO3
] = [ H2SO3
] |
|
8. |
A
solution prepared as 0.10 M NaHSO3 has: |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] = [ HSO3
] > [ SO3 2
] |
C) |
[
HSO3 ] > [ H2SO3
] = [ SO3 2 ] |
D) |
[
HSO3 ] = [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ HSO3
] = [ H2SO3
] |
|
9. |
A
solution prepared as 0.10 M H2SO3 has: |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] = [ HSO3
] > [ SO3 2
] |
C) |
[
HSO3 ] > [ H2SO3
] = [ SO3 2 ] |
D) |
[
HSO3 ] = [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ HSO3
] = [ H2SO3
] |
|
10. |
A
solution prepared as 0.10 M NaHSO3 and 0.10 M Na2SO3
has: |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] = [ HSO3
] > [ SO3 2
] |
C) |
[
HSO3 ] > [ H2SO3
] = [ SO3 2 ] |
D) |
[
HSO3 ] = [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ HSO3
] = [ H2SO3
] |
|
11. |
A
solution prepared as 0.10 M NaHSO3 and 0.10 M H2SO3
has: |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] = [ HSO3
] > [ SO3 2
] |
C) |
[
HSO3 ] > [ H2SO3
] = [ SO3 2 ] |
D) |
[
HSO3 ] = [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ HSO3
] = [ H2SO3
] |
|
12. |
The pH after mixing 0.20 mol of H2SO3
and 0.30 mol of NaOH in 1.0 L of water is: |
|
A)
7.2 |
B)
8.9 |
C)
2.1 |
D)
5.1 |
E)
9.5 |
|
13. |
At pH = 7.00
in a titration of H2SO3
the solution is expected to have |
|
A) |
[
H2SO3 ] > [ HSO3
] > [ SO3 2
] |
B) |
[
H2SO3 ] > [ SO3
2 ] > [ HSO3
] |
C) |
[
HSO3 ] > [ H2SO3
] > [ SO3 2 ] |
D) |
[
HSO3 ] > [ SO3
2 ] > [ H2SO3
] |
E) |
[
SO3 2 ] > [ HSO3
] > [ H2SO3
] |
F) |
[
SO3 2 ] > [ H2SO3
] > [ HSO3 ] |
|
14. |
When
the pH of a solution containing H2SO3
is adjusted to pH = 7.00 the ratio [SO32-]
/ [HSO3- ] is |
|
A)
0.98 |
B)
0.88 |
C)
0.74 |
D)
0.65 |
E)
0.57 |
|
15. |
When
40 mL of 0.200 M H2SO3
is titrated with 0.125 M NaOH the pH at the first
equivalence point is: |
|
A) |
9.04 |
D) |
7.19 |
B) |
3.64 |
E) |
6.33 |
C) |
1.85 |
F) |
4.52 |
|
16. |
The
pH after mixing 0.30 mol of H2SO3
and 0.15 mol of NaOH in 1.0 L of water is: |
|
A)
5.7 |
B)
4.3 |
C)
8.6 |
D)
3.0 |
E)
1.9 |
|
17. |
The
molar solubility of lead iodide (PbI2 , Ksp
= 6.5 Χ 10 -9 ) in water is: |
|
A) |
1.9
Χ 10-3 |
D) |
6.5
Χ 10-9 |
B) |
1.2
Χ 10-3 |
E) |
1.6
Χ 10-7 |
C) |
8.3
Χ 10-4 |
F) |
4.0
Χ 10-5 |
|
18. |
The
molar solubility of lead iodide (PbI2 , Ksp
= 6.5 Χ 10 -9 ) in a 0.15 M
solution of potassium iodide KI is: |
|
A) |
1.9
Χ 10-6 |
D) |
6.5
Χ 10-9 |
B) |
1.2
Χ 10-4 |
E) |
1.6
Χ 10-7 |
C) |
8.1
Χ 10-5 |
F) |
2.9
Χ 10-7 |
|
19. |
Whats
the molar solubility of Ca(OH)2 (Ksp
= 6.5 Χ10-6)
in a 0.25M solution of KOH? |
|
A) |
2.6
Χ10-5 |
D) |
5.3
Χ10-4 |
B) |
2.2
Χ10-4 |
E) |
1.0
Χ10-4 |
C) |
6.5
Χ10-4 |
F) |
4.1
Χ10-7 |
|
20. |
When
NaOH is added slowly to a solution in which [Zn2+]
= 1.0 Χ 10-6 the precipitate Zn(OH)2
will begin to form according to
Zn(OH)2 (s)
Zn2+(aq) + 2 OH-
(aq), Ksp = 1.8 Χ 10-14
when the pH of the solution is: |
|
A)
10.1 |
B)
8.6 |
C)
7.2 |
D)
9.0 |
E)
12.3 |
|
|
|
|